Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, W (Ed.)Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.more » « less
-
Congenital heart defects are the most prevalent human birth defects, and their incidence is exacerbated by maternal health conditions, such as diabetes during the first trimester (pregestational diabetes). Our understanding of the pathology of these disorders is hindered by a lack of human models and the inaccessibility of embryonic tissue. Using an advanced human heart organoid system, we simulated embryonic heart development under pregestational diabetes–like conditions. These organoids developed pathophysiological features observed in mouse and human studies before, including ROS-mediated stress and cardiomyocyte hypertrophy. scRNA-seq revealed cardiac cell-type-specific dysfunction affecting epicardial and cardiomyocyte populations and alterations in the endoplasmic reticulum and very-long-chain fatty acid lipid metabolism. Imaging and lipidomics confirmed these findings and showed that dyslipidemia was linked to fatty acid desaturase 2 mRNA decay dependent on IRE1-RIDD signaling. Targeting IRE1 or restoring lipid levels partially reversed the effects of pregestational diabetes, offering potential preventive and therapeutic strategies in humans.more » « less
-
null (Ed.)Abstract This review summarizes published findings of the beneficial and harmful effects on the heart, lungs, immune system, kidney, liver, and central nervous system of 47 drugs that have been proposed to treat COVID-19. Many of the repurposed drugs were chosen for their benefits to the pulmonary system, as well as immunosuppressive and anti-inflammatory effects. However, these drugs have mixed effects on the heart, liver, kidney, and central nervous system. Drug treatments are critical in the fight against COVID-19, along with vaccines and public health protocols. Drug treatments are particularly needed as variants of the SARS-Cov-2 virus emerge with some mutations that could diminish the efficacy of the vaccines. Patients with comorbidities are more likely to require hospitalization and greater interventions. The combination of treating severe COVID-19 symptoms in the presence of comorbidities underscores the importance of understanding the effects of potential COVID-19 treatments on other organs.more » « less
-
Abstract Neural differentiation of mesenchymal stem cells is a controversial phenomenon, as it would require transdifferentiation across the mesoderm-ectoderm barrier. However, several laboratories have observed that MSCs are able to be induced to express neural characteristics. Previously, we demonstrated that the cAMP-elevating agents, forskolin and IBMX, induced neural-like differentiation of MSCs, including expression of neural markers and increased sensitivity to neurotransmitters. However, due to the broad range of effects that forskolin and IBMX can elicit through the intracellular second messenger, cAMP, a better mechanistic understanding is required. Here, we show that neural induction by forskolin and IBMX is dependent on downregulation of expression of the master transcriptional regulator, neuron restrictive silencer factor (NRSF), and its downstream target genes. Since silencing of NRSF is known to initiate neural differentiation, it suggests that forskolin and IBMX result in transdifferentiation of MSCs into a neural lineage.more » « less
-
The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional repressor of the neuronal phenotype. Research to date has shown that it is an important player in the growth and development of the nervous system. Its role in the maturation of neural precursor cells to adult neurons has been well characterized in stem cell models. While much has been characterized from a developmental perspective, research is revealing that NRSF plays a role in various neurological diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. Dysregulation of NRSF activity disrupts downstream gene expression that is responsible for neuronal cell homeostasis in several models that contribute to pathologic states. Interestingly, it is now becoming apparent that the dysregulation of NRSF contributes to neurological disease through epigenetic mechanisms. Although NRSF itself is a transcription factor, its major effectors are chromatin modifiers. At the level of epigenetics, changes in NRSF activity have been well characterized in models of neuropathic pain and epilepsy. Better understanding of the epigenetic basis of brain diseases has led to design and use of small molecules that can prevent NRSF from repressing gene expression by neutralizing its interactions with its chromatin remodelers. This review will address the basic function of NRSF and its cofactors, investigate their mechanisms, then explore how their dysfunction can cause disease states. This review will also address research on NRSF as a therapeutic target and delve into new therapeutic strategies that focus on disrupting NRSF’s ability to recruit chromatin remodelers.more » « less
An official website of the United States government
